

www.iaset.us editor@iaset.us

IMPLEMENATION OF MACRO PROCESSOR USING FILE OPERATI ONS

NIRAV SHAH 1 & SAUMYA LAHERA 2

1Department of Computer Engineering, Rajiv Gandhi Institute of Technology, Mumbai, Maharashtra, India
2Department of Computer Engineering, Shah & Anchor Kutchhi Engineering College, Mumbai, Maharashtra, India

ABSTRACT

The design objective for this macro processor is to be as powerful as possible and yet remain simple to use and

implement. It was developed primarily to manipulate computer programs where the processor takes a symbol table plus a

program template containing macros and produces a specific program. This approach is applied to the macro processor

itself. The macro processor template may be run through the portable macro processor to produce a version tailored to the

local computing environment. Example: In particular, it is easy to produce a IBM 360 version of the macro processor.

We consider macro processors to be a particular kind of translator writing system rather than simply a mechanism for

performing textual replacement.

KEYWORDS: Macro, Macro Expansion

INTRODUCTION

Assembly language programmer often finds it necessary to repeat some block of code many times in course of a

program the block may consist of code to save or exchanges set of registers. In such situations programmer will find

macroinstructions useful. Macroinstructions (macros) are single line abbreviations for group of instructions. In employing

a block of code, the programmer essentially defines a single "instruction" to represent a block of code. For every

occurrence of this one-line macroinstruction in program, macro-processing assembler will substitute entire block.

A macroinstruction is simply a notational convenience for the programmer. A macro consists of a name, a set of

parameters and a body of code. Macroinstructions are usually considered as extension of basic assembler language, and

macro processor is viewed as extension of basic assembler algorithm. Example macro processors of higher level

languages-PL/I, C, Ada and C++. Macro can be defined as following.

Figure 1: Macroinstruction Definition

MACRO is pseudo op and it is at first line of definition and identified following line as macroinstruction name

can have optional arguments. Following the name line is the sequence of instructions being abbreviated-the instruction you

want macro processor to replace when you call macro. The definition is terminated with MEND pseudo -op. Figure 2

shows the example of a macro.

International Journal of Computer Science
and Engineering (IJCSE)
ISSN(P): 2278-9960; ISSN(E): 2278-9979
Vol. 4, Issue 5, Aug - Sep 2015, 1-6
 © IASET

2 Nirav Shah & Saumya Lahera

Impact Factor (JCC): 3.5987 NAAS Rating: 1.89

Figure 2: Example of Macro

The macro processor replaces each macroinstruction with the corresponding group of source language statements.

This is called macro expansion or expanding the macros. Note that macro definition itself does not appear in expanded

source code. The definition is saved but macro processor. And its is expanded at each macro call in source program.

There are two kinds of macro expansion:

• Lexical expansion

• Semantic expansion

Lexical Expansion implies replacement of a character string by another character string during program

generation.

Semantic Expansion implies generation of instructions tailored to the requirements of a specific usage. We have

used to lexical expansion in our implementation

Variation in Macro:

• Macro can gave arguments

• Conditional macro expansion

• Macro calls within macros

• Macro instructions defining macros

As this is the topic to discuss, we do not elaborate it, however reader can read about it more here [3].

DESIGN

Macro processor can be implemented in 1 or 2 pass. 2 pass is more generally used and we also have used that in

our implementation. So we will discuss here 2-pass algorithm for macro processor. There are 4 basic tasks that any macro

processor must perform.

• Recognize macro definitions: Macro processor recognizes macro definitions identified by MACRO and MEND

pseudo-op. This task can be complicated if we are using nested macro.

• Save the definitions: processor must store macroinstruction definition, which it will need for expanding macro

calls.

• Recognize calls: the processor must recognize macro calls.

• Expand calls and substitute arguments: the processor must substitute for dummy arguments with corresponding

arguments in macro call. Note that having argument in macro is optional.

Implemenation of Macro Processor Using File Operations 3

www.iaset.us editor@iaset.us

Now after defining basic task we must decide which all tables or database we will use in macro processor

implementation. Over the two passes we can use 3 tables.

• Table: macro definition table (MDT)-- store body of macro

• Table: macro name table (MNT)-used to store names of defined macros.

• Table: argument List Array (ALA) -to store arguments and substitute later with actual ones. In our

implementation we are not using arguments so we will discuss more about 1 and 2 and their roles in both pass.

Now lets see what both pass do.

Pass 1: MACRO DEFINITION: in thus program test each input line. If macro pseudo-op entire macro

definitions that flows is saved in next available location MDT. The name is entered in MNT along with pointer that points

to first location of MDT entry of definition. Process is repeated until END pseudo is found means end of program.

Pass 2: MACRO CALLS AND EXPANSION: scanning the program, when call is found, call processor sets a

pointer(MDTP) for corresponding definition stored in MDT. Starting entry is obtained from MNT table .as we are not

using arguments it will directly take mdt index that we got from mnt table and starts to replace call by set of instruction

from MDT table until MEND pseudo-op is reached i.e. Reading MEND line in MDT terminated expansion of macro.

This is how we can get expanded program after replacing each macro call.

When END is reached the expanded program is given to assembler. Flowchart shows working of both pass for

better understanding.

IMPLEMENTATION

We have developed macro processor in C language. Entire logic is based on string matching and we are using file

operations [5]. Our program takes file named "input.txt" as input although it can be changed via program. Program outputs

3 files, they are:

• MDT.txt=in pass 1 it is created and all macro definition present in input.txt. While in pass 2 it is used to expand

macro calls.

• MNT.txt=in pass 1 it is created and stores macro and index field that has value as starting index of that macro in

MDT. In pass 2, when call is made processor checks MNT.txt and takes MDT index value and goes to MDT.txt

and expands call until MEND is found.

• OUT.txt=this file contain output.

Screenshots are provided for better understanding and shows our implementation part.

4 Nirav Shah & Saumya Lahera

Impact Factor (JCC): 3.5987 NAAS Rating: 1.89

Figure 3: Input File

This image shows what will be the input for program, comments must be removed before running program, they

are just provided for better understanding.

Figure 4: MDT File

Figure 5: MNT File

0,5,10 in MNT.txt file are respective starting index of that macro in MDT while add, sub, mov are macro created

by programmer. So as example when sub is called, program goes to MNT.txt and searches sub in it, and when found it

takes its MDT index i.e. found at 2 record, so it extracts 5 from MNT and goes to now MDT file’s line no 5, and starts to

expand sub call until mend is found in MDT.txt. We hope its clear now.

The output file would be like this.

Implemenation of Macro Processor Using File Operations 5

www.iaset.us editor@iaset.us

Figure 6: Output File

ADVANTAGES

By defining the appropriate macroinstruction, an assembly language programmer can tailor his own higher-level

facility in convenient manner, at no cost in control over structure of program.

He can achieve the conciseness and ease in coding of high-level languages without losing advantage of assembly

language programming.

No need to care for different facilities for different languages.

Once developed (even cost more), can be used for any language, and also for a long time.

CONCLUSIONS

We conclude that macros helps programmer to make shorter code and that codes are easy to understand and

debug. Also gives programmer flexibility to change only macro definition and changes will be automatically reflected

wherever macro is called.

FUTURE SCOPE

In future we might see same macros can be expanded in different languages leaving complexity for designers.

We showed you how could you implement macro without arguments, so macro with arguments can be implemented

similarly.

REFERENCES

1. Donovan, System Programming, Tata McGraw-Hill Education,1991

2. https://www.classle.net/book/macros-and-system-software

3. http://web.thu.edu.tw/ctyang/www/files/sp_chap4.pdf

4. http://elearning.vtu.ac.in/P7/enotes/CS51/MacroProcessor-SS.pdf

5. http://www.studytonight.com/c/file-input-output.php

