International Journal of Computer Science A International Academy of Science,

and Engineering (IJCSE) 5
ISSN(P): 2278-9960; ISSN(E): 2278-9979 Engineering and Technology
Vol. 4, Issue 5, Aug - Sep 2015, 1-6 IASET Connecting Rescarchers; Nurturing Innovations

© IASET

IMPLEMENATION OF MACRO PROCESSOR USING FILE OPERATI ONS

NIRAV SHAH " & SAUMYA LAHERA 2
'Department of Computer Engineering, Rajiv Gandhtitnte of Technology, Mumbai, Maharashtra, India

Department of Computer Engineering, Shah & Anchotckhi Engineering College, Mumbai, Maharashtrajdn

ABSTRACT

The design objective for this macro processor ibdas powerful as possible and yet remain singplese and
implement. It was developed primarily to manipulatanputer programs where the processor takes addyatile plus a
program template containing macros and producgseeific program. This approach is applied to themmagrocessor
itself. The macro processor template may be ruoutjin the portable macro processor to produce dovetailored to the
local computing environment. Example: In particuliaris easy to produce a IBM 360 version of thecroaprocessor.
We consider macro processors to be a particulat &intranslator writing system rather than simplynachanism for

performing textual replacement.
KEYWORDS: Macro, Macro Expansion
INTRODUCTION

Assembly language programmer often finds it necggsarepeat some block of code many times in eoifsa
program the block may consist of code to save chamges set of registers. In such situations pnogrer will find
macroinstructions useful. Macroinstructions (mag®@re single line abbreviations for group of instrons. In employing
a block of code, the programmer essentially defiaesingle "instruction" to represent a block of eodror every

occurrence of this one-line macroinstruction ingrean, macro-processing assembler will substitutizgesblock.

A macroinstruction is simply a notational convewmieror the programmer. A macro consists of a nansgt of
parameters and a body of code. Macroinstructioasuaually considered as extension of basic assenarguage, and
macro processor is viewed as extension of basienaser algorithm. Example macro processors of higheel

languages-PL/I, C, Ada and C++. Macro can be ddfasefollowing.

MACRDO
macro name
[arguments]

sequeneve to be abbreviated

MEND
Figure 1: Macroinstruction Definition

MACRO is pseudo op and it is at first line of défon and identified following line as macroinsttioy name
can have optional arguments. Following the nameibrthe sequence of instructions being abbreviitednstruction you
want macro processor to replace when you call makine definition is terminated with MEND pseudo -dfigure 2

shows the example of a macro.

www.iaset.us anti@iaset.us

2 Nirav Shah & Saumya Lahera

FEacro
add
addlrl,s
addl r2,5
addl r3,5
rrve et

Figure 2: Example of Macro

The macro processor replaces each macroinstrusftbrthe corresponding group of source languagestants.
This is called macro expansion or expanding therasad\ote that macro definition itself does not egqupin expanded

source code. The definition is saved but macrogssaer. And its is expanded at each macro calluncegprogram.

There are two kinds of macro expansion:
» Lexical expansion
* Semantic expansion

Lexical Expansion implies replacement of a charadting by another character string during program
generation.

Semantic Expansion implies generation of instrunditailored to the requirements of a specific us&ige have

used to lexical expansion in our implementation
Variation in Macro:
» Macro can gave arguments
» Conditional macro expansion
* Macro calls within macros
e Macro instructions defining macros
As this is the topic to discuss, we do not elalmitathowever reader can read about it more hédre [3

DESIGN

Macro processor can be implemented in 1 or 2 ggapsss is more generally used and we also havethaeth
our implementation. So we will discuss here 2-@dgsrithm for macro processor. There are 4 basistthat any macro
processor must perform.

* Recognize macro definitions: Macro processor reizegnmacro definitions identified by MACRO and MEND

pseudo-op. This task can be complicated if we aimgunested macro.

* Save the definitions: processor must store madroicton definition, which it will need for expanmdj macro

calls.
* Recognize calls: the processor must recognize nwdia

 Expand calls and substitute arguments: the procesast substitute for dummy arguments with corresiig
arguments in macro call. Note that having argunventacro is optional.

Impact Factor (JCC): 3.5987 NAAS Rating.89

Implemenation of Macro Processor Using File Operatins 3
Now after defining basic task we must decide whithtables or database we will use in macro pramess
implementation. Over the two passes we can uskl8sta
» Table: macro definition table (MDT)-- store body of macro
» Table: macro name table (MNT)-used to store names ohddfmacros.

e Table: argument List Array (ALA) -to store arguments asdbstitute later with actual ones. In our
implementation we are not using arguments so wedigtuss more about 1 and 2 and their roles ih paiss.

Now lets see what both pass do.

Pass 1 MACRO DEFINITION: in thus program test each input line. If macroudeeop entire macro
definitions that flows is saved in next availaldedtion MDT. The name is entered in MNT along vgthinter that points

to first location of MDT entry of definition. Pross is repeated until END pseudo is found meanogpdbgram.

Pass 22MACRO CALLS AND EXPANSION: scanning the program, when call is found, calcpesor sets a
pointer(MDTP) for corresponding definition stored MDT. Starting entry is obtained from MNT tables \we are not
using arguments it will directly take mdt index tthree got from mnt table and starts to replace loglket of instruction

from MDT table until MEND pseudo-op is reached Reading MEND line in MDT terminated expansion afaro.
This is how we can get expanded program after cemleeach macro call.

When END is reached the expanded program is giweassembler. Flowchart shows working of both pass f
better understanding.

IMPLEMENTATION

We have developed macro processor in C languadeeHBmgic is based on string matching and we aiagifile
operations [5]. Our program takes file named "irptit as input although it can be changed via paaogrProgram outputs

3 files, they are:

* MDT.txt=in pass 1 it is created and all macro défin present in input.txt. While in pass 2 it ised to expand

macro calls.

 MNT.txt=in pass 1 it is created and stores maci iadex field that has value as starting indexhatt tmacro in
MDT. In pass 2, when call is made processor chdtiK3 .txt and takes MDT index value and goes to MR .t

and expands call until MEND is found.
» OUT.txt=this file contain output.

Screenshots are provided for better understandidghows our implementation part.

www.iaset.us anti@iaset.us

4 Nirav Shah & Saumya Lahera

[input - Notep=d T

File Edit Format WView Help

macro Simacro definition
add

add1r1,5

add1l r2,5

addl1 r3,5

mend

macro S/ macro definition
sulb

subl r3,5

sublr2,5

sublrl,5

mend

macro Sifmacro definition|
mov

movlri,r2

mowvl r2,r2

movl r3,rd

mend

sub Sfmacro call
mow S/ macro call

add Sfmacro call

Figure 3: Input File

This image shows what will be the input for programmments must be removed before running progtiasy,

are just provided for better understanding.

2 mat - etepac
“File Edit Formst View Help

add

add1r1,5

add1r2,5

add1r3,5

mend

sub

subl1r3,5

sub1r2,5

sub1lrl,5

mend

mov

movlrl,r2

movlr2,r2

movlr3,rd

mend

Figure 4: MDT File

| mnt -
i ;ile Edit Format View Help
D add
5 sub
10 mov

Figure 5: MNT File

0,5,10 in MNT.txt file are respective starting indef that macro in MDT while add, sub, mov are noacreated
by programmer. So as example when sub is callefjyram goes to MNT.txt and searches sub in it, ahdrwfound it
takes its MDT index i.e. found at 2 record, soxir&cts 5 from MNT and goes to now MDT file’s lime 5, and starts to

expand sub call until mend is found in MDT.txt. \Wape its clear now.

The output file would be like this.

Impact Factor (JCC): 3.5987 NAAS Rating.89

Implemenation of Macro Processor Using File Operatins 5

_ot-torpad T N |

File Edit Format View Help
sub1r3,5
sub1r2,5
sublrl,5

movlrl,r2
movl r2,r2
movlr3,rd

add1r1,5
add1r2,5
add1r3,5

Figure 6: Output File
ADVANTAGES

By defining the appropriate macroinstruction, aseasbly language programmer can tailor his own higgneel

facility in convenient manner, at no cost in cohtreer structure of program.

He can achieve the conciseness and ease in coflimghslevel languages without losing advantagasgembly

language programming.
No need to care for different facilities for diféatt languages.
Once developed (even cost more), can be used ydaaguage, and also for a long time.

CONCLUSIONS

We conclude that macros helps programmer to maketeshcode and that codes are easy to understathd an
debug. Also gives programmer flexibility to changely macro definition and changes will be autonsllyc reflected

wherever macro is called.
FUTURE SCOPE
In future we might see same macros can be expandgfferent languages leaving complexity for descs.

We showed you how could you implement macro withatguments, so macro with arguments can be impleden

similarly.
REFERENCES
1. Donovan, System Programming, Tata McGraw-Hill Edioca1991
2. https://www.classle.net/book/macros-and-systemasof
3. http://web.thu.edu.tw/ctyang/wwwifiles/sp_chap4.pdf
4. http://elearning.vtu.ac.in/P7/enotes/CS51/MacroPseor-SS.pdf

5. http://lwww.studytonight.com/c/file-input-output.php

www.iaset.us anti@iaset.us

